Generative pairwise models for speaker recognition
نویسندگان
چکیده
This paper proposes a simple model for speaker recognition based on i–vector pairs, and analyzes its similarity and differences with respect to the state–of–the–art Probabilistic Linear Discriminant Analysis (PLDA) and Pairwise Support Vector Machine (PSVM) models. Similar to the discriminative PSVM approach, we propose a generative model of i–vector pairs, rather than an usual i–vector based model. The model is based on two Gaussian distributions, one for the “same speakers” and the other for the “different speakers” i–vector pairs, and on the assumption that the i–vector pairs are independent. This independence assumption allows the distributions of the two classes to be independently estimated. The “Two–Gaussian” approach can be extended to the Heavy–Tailed distributions, still allowing a fast closed form solution to be obtained for testing i–vector pairs. We show that this model is closely related to PLDA and to PSVM models, and that tested on the female part of the tel– tel NIST SRE 2010 extended evaluation set, it is able to achieve comparable accuracy with respect to the other models, trained with different objective functions and training procedures.
منابع مشابه
Pairwise Discriminative Speaker Verification in the 𝕀-Vector Space
This work presents a new and efficient approach to discriminative speaker verification in the i–vector space. We illustrate the development of a linear discriminative classifier that is trained to discriminate between the hypothesis that a pair of feature vectors in a trial belong to the same speaker or to different speakers. This approach is alternative to the usual discriminative setup that d...
متن کاملSpeaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014